banner
Home » News » Content
Product Categories

How An LCD Works

- Aug 01, 2018 -

                                                      How an LCD works

The backlight in liquid crystal display provides an even light source behind the screen. This light is polarized, meaning only half of the light shines through to the liquid crystal layer. The liquid crystals are made up of a part solid, part liquid substance that can be "twisted" by applying electrical voltage to them. They block the polarized light when they are off, but reflect red, green, or blue light when activated.

10.1 inch tft display (9).jpg

Each LCD screen contains a matrix of pixels that display the image on the screen. Early LCDs had passive-matrix screens, which controlled individual pixels by sending a charge to their row and column. Since a limited number of electrical charges could be sent each second, passive-matrix screens were known for appearing blurry when images moved quickly on the screen. Modern LCDs typically use active-matrix technology, which contain thin film transistors, or TFTs. These transistors include capacitors that enable individual pixels to "actively" retain their charge. Therefore, active-matrix LCDs are more efficient and appear more responsive than passive-matrix displays.


NOTE: An LCD's backlight may either be a traditional bulb or LED light. An "LED display" is simply an LCD screen with an LED backlight. This is different than an OLED display, which lights up individual LEDs for each pixel. While the liquid crystals block most of an LCD's backlight when they are off, some of the light may still shine through (which might be noticeable in a dark room). Therefore OLEDs typically have darker black levels than LCDs.